You have no items in your shopping cart.
As a consumer, you will regularly encounter in the marketplace gems that have been treated to change their appearance. A topic that often comes up is whether a particular gemstone is or isn’t treated. In a sense, humans alter all gem materials after they are found in the earth in order to prepare them for use in jewelry. Natural gem crystals are transformed from their rough crystallographic form into the shapes, outlines, and degrees of polish in the gemstones that we appreciate and wear in jewelry. These steps are and have always been the routine procedures used for manufacturing gemstones. Beyond traditional cutting and polishing, however, gems can often be treated in ways meant to alter their color or clarity. In addition to enhancing their appearance, the process may also improve (or in some cases diminish) the gem’s durability. Because these treatments are not always apparent to the unpracticed eye, and are sometimes difficult to distinguish even by experts, it is necessary and legally required for anyone selling a gem (including consumer to consumer trade) to disclose the treatment procedure it may have received.
Non-disclosure of this treatment could cause a person to believe that a
particular gemstone was of higher quality naturally and therefore be more
valuable than it actually is. An added challenge is that treatments can be
permanent, long lasting, or short-lived under normal jewelry use. Treated
gems may require special care by their owner. In the United States, the
Federal Trade Commission has established a set of consumer
guidelines outlining the need for treatment disclosures and special
care requirements, and countries around the world either adhere to similar
guidelines, or have regulations of their own. Additionally there are
several professional organizations such as the American Gem Trade Association
(AGTA), or the International Colored Gemstone Association (ICA), or The World Jewellery
Confederation (CIBJO), that have formulated specific guidelines that
their members are required to follow regarding the disclosure of treatments
in gem materials. The following glossary includes terms that are often used
in the gem treatment nomenclature, and that you may encounter when shopping
for gemstones. Finally, treatments for gemstones are constantly being
changed and refined, and the detection of these new treated gems is an
important part of ongoing gemological research.
The following guide will give a short description of the treatment process,
some gems for which the process is used, how easy or difficult the
treatment is to detect for a trained gemologist, how often the treated gem
might be encountered in the jewelry trade, and how durable the material is
to normal handling procedures. Any special care instructions for these
treated gems are also provided.
– a chemical used to alter / reduce a component of, or the entire
color, of a porous gem. Some gemstones are bleached and then dyed, a form
of “combination treatment.”
1. The most commonly encountered bleached gems include:
Jadeite jade – Jadeite is often bleached with acid to remove
an unwanted brown component from the material. Bleaching in jade is
typically part of a two-step process: because acid bleaching causes the
material to become slightly porous or susceptible to breakage along
fractures, it is then subsequently treated with polymer impregnation to
fill these open spaces to produce a better overall appearance.
Pearls – All types of pearls are routinely bleached with hydrogen peroxide to lighten and improve their uniformity of color.
Other materials – Some coral, chalcedony and
tiger’s eye quartz may be bleached to lighten their color.
2. Detectability – Bleaching as a one-step process
is virtually impossible to detect in most cases. The second step,
impregnation with polymer compounds, is easier to detect by a qualified
gemological laboratory using magnification and more advanced analytical
techniques.
3. Encountered in the trade – Frequently in
pearls and jadeite.
4. Durability factors – Acid bleaching causes a
breakdown in the structure of most materials, so as a stand-alone
treatment, leaves materials vulnerable to breakage. Most bleaching is
followed by impregnation to improve durability and strengthen perceived
color
5. Special care requirements – Bleached gems tend to
be more brittle, and they may be much more porous and thereby more
absorbent of human oils and other liquids. It is suggested that pearls be
kept in a soft, dry environment to avoid surface damage.
– altering a gem’s appearance by applying a coloring agent
like paint to the back surfaces of gems (a treatment known as
“backing”), or paint applied as a coating to all or a portion
of a gemstone’s surface with the effect of altering the color.
1. The most commonly encountered coated gems include:
Diamonds – Thin-film coatings are sometimes used on diamonds to change their color. Crude, yet effective coatings can also include the use of permanent ink markers along the girdle surface of a diamond, causing its face–up appearance to be affected by the color of the ink used. More modern coating methods use metal oxide thin films.
Tanzanite – Though rarely used, tanzanites have been coated to improve the intensity of their blue-violet color.
Topaz – Some colorless topaz is coated with metal oxides to create the appearance of a variety of different colors. In the past, such treatments were often described as a form of “diffusion” of a chemical into the surface of the gemstone, but this was a misnomer since in most cases the added color was confined to the surface of the gemstone.
Coral – Some black coral (also known as Horn coral) has been reported as bleached and then coated with relatively thick layers of artificial resin with the goal of protecting the coral and intensifying its color.
Pearls – Some pearls reportedly have been treated
with a colorless hard coating in an effort to improve durability.
Quartz – Occasionally, quartz is coated with metal
oxides to create colors rarely seen in natural quartz.
2. Durability factors – Because they tend to be
softer than or may not adhere well to the underlying gem, thin-film surface
coatings of any kind are susceptible to scratching, particularly along
facet edges and junctions. Care should be taken to not allow any hard or
abrasive objects to come in contact with coated gems.
3. Detectability - Once suspected, the treatment
is easy to identify by a skilled gemologist except in the situation where
the coating substance is colorless, and it has been added to improve
durability.
4. Encountered in the trade – Occasionally for some
gems.
5. Special care requirements – When they are not being worn, coated gem materials should be wrapped in soft packaging and kept in a dry environment.
– introducing colored dyes into porous or fractured gems to change
their color. Such fractures are sometimes purposely induced by heating the
gem so that an otherwise non-porous material can more readily accept the
dye.
1. The most commonly encountered dyed gems include:
Pearls – Dye often improves the appearance of
lower–quality natural and cultured pearls by enhancing their
color.
Other gem materials – The process has been used since ancient times for materials such as coral, turquoise, lapis lazuli, howlite, nephrite jade, chalcedony, quartz, emerald, and ruby.
2. Durability factors – When dye is applied to
porous materials, their durability may be long-lived but is ultimately
dependent on the stability of the dye itself. In gems with larger
fractures, the dye can sometimes leak out under a variety of conditions.
Many dyes can be removed if the gem comes into contact with a solvent such
as alcohol or acetone. Some dyes are unstable with exposure to the
ultraviolet in sunlight and can fade over time.
3. Detectability –A qualified gemologist can detect
dyed gems in most cases.
4. Encountered in the trade – Occasionally
for most gems, and frequently for colored pearls.
5. Special care requirements – When it is known that
gem materials have been dyed, care must be taken to not bring them in
contact with chemicals such as acetone or alcohol, which could dissolve the
dyes, or have them exposed to prolonged periods of sunlight (such as
leaving it on a sunny window ledge) which could cause the dyed colors to
fade.
– filling surface-reaching fractures or cavities with a glass,
resin, wax or oil to conceal their visibility and to improve the apparent
clarity of gem materials, appearance, stability, or in extreme
cases—to add to a slight amount of weight to a gem. The filling
materials vary from being solids (a glass) to liquids (oils), and in most
cases, they are colorless (colored filler materials could be classified as
dyes).
1. The most commonly encountered fracture-filled gems
include:
Diamond – Surface-reaching fractures are sometimes
filled with high-lead-content glass. This reduces the visibility of the
fracture, with the goal of enhancing the appearance of the diamond. The
filled fracture is still present – it is just less apparent.
Ruby – Numerous surface-reaching fractures are filled with a glass to lessen their visibility and make the gem more transparent than it really is. In some cases, the amount of filler glass can be significant in a treated ruby.
Emerald – Surface-reaching fractures in emerald are sometimes filled with essential oils, other oils, waxes, and “artificial resins” —epoxy prepolymers, other prepolymers (including UV-setting adhesives), and polymers to reduce the visibility of the fractures and improve the apparent clarity. These substances have varying degrees of stability in treated emeralds, and the volume of filler material present can range from insignificant to major amounts.
Other materials – Resins and glasses can
potentially be used on any durable gem with surface-reaching fractures,
including quartz, aquamarine, topaz, tourmaline and other transparent gems.
This kind of treatment is, however, less prevalent than the other treatment
processes mentioned above.
2. Durability factors – Much depends on the
durability of the filler. Glasses tend to be harder and therefore more
durable than resins, oils or waxes. Changes in air pressure, proximity to
heat, or by exposure to chemicals can all affect the appearance of filled
gems by potentially altering or removing the filler substance.
3. Detectability – In most cases, filled gems can be
recognized by a qualified gemologist using magnification.
4. Encountered in the trade – Often encountered for
diamonds, ruby and sapphires, and emerald.
5. Special care requirements –Avoid exposure to
heat, and changes in air pressure (such as in an airline cabin), or
chemicals. Filled emeralds can also be damaged by exposure to hot water
used for washing dishes.
– the exposure of a gem to high temperatures for the purpose of
altering its color and/or clarity.
1. The most commonly encountered heat-treated gems include.
Amber – When amber is submerged in hot oil—linseed oil
for example—it's inherent body color can darken, and the material
can take on a clearer appearance. The hot oil can also cause the material
to develop a series of spangled, glittery inclusions.
Amethyst – Heating can remove unwanted brownish
inclusions in some amethysts or lighten the color of overly dark
stones.
Aquamarine – Without treatment, much of the
aquamarine is blue–green in coloration. Heating in a controlled
environment can remove the greenish color component from the material to
produce a more blue appearance.
Citrine – Some forms of amethyst can be heated and
turned into citrine.
Ruby – Heating can remove purplish coloration
rendering a more pure red color. The process can also remove
“silk” (minute needle–like inclusions) that can cause a
gem to appear lighter in tone and be more opaque. Heating can also cause
recrystallization of the silk inclusions to make them more prominent which
allows the gemstone to have stronger asterism (a reflecting star
effect).
Sapphire – Heating can intensify, or even induce, a
blue coloration in sapphires. The heating can also remove
“silk” inclusions, which also helps to make the material appear
more transparent. It in can also cause recrystallization of the silk
inclusions to make them more prominent, which allows the gemstone to have
stronger asterism (a reflecting star effect).
Tanzanite – The mineral zoisite, which includes the gem variety known as tanzanite, it is often heated at low temperatures to remove a brownish color component to produce a stronger purplish-blue color.
Topaz – Heating yellowish pink topaz sometimes has the effect of removing the yellowish color component, thereby intensifying the pink color. Heating is also used to control the color of blue topaz—the material that may have started out as colorless is irradiated followed by heating which results in a desirable blue color.
Tourmaline – Sometimes heat treating can cause
overly dark green material to become lighter in tone, or it may affect the
color in other tourmalines.
Zircon – Some reddish brown zircons are heated in
controlled environments to produce more commercially viable colors,
including an intense blue.
2. Durability factors – Heat treatments in
all of the gemstones mentioned above are considered durable and permanent
under normal handling conditions.
3. Special care requirements – Submitting gemstones
to intense heat may render them slightly more brittle than usual, and care
must be taken not to damage pointed faceted corners and edges.
– Heating a diamond to high temperatures under high confining
pressures to remove, or change its color.
Heating diamonds at high pressures and high temperatures can remove or
lessen their brownish coloration so the gem becomes colorless. Other types
of diamonds may be transformed from brown to yellow, orangy yellow and
yellowish green, or to blue colors by this process.
1. Durability factors – HPHT treatments are
considered stable and permanent to normal jewelry handling conditions.
2. Detectability – Difficult to identify, even by
seasoned gemologists. If suspected, only a qualified gemological laboratory
can confirm the treatment.
3. Encountered in the trade – Occasionally in
colorless diamonds, more readily in some colored diamonds.
4. Special care requirements – Other than normal
care considerations used for most jewelry, there are no particular
instructions for the care and handling of HPHT treated diamonds.
– the surface of a porous gemstone is permeated with a polymer,
wax or plastic to give it greater durability and improve its
appearance.
The most commonly encountered wax or plastic impregnated gemstones are
opaque, and they include turquoise, lapis lazuli, jadeite, nephrite,
amazonite, rhodochrosite and serpentine.
1. Durability factors – Many impregnations are
often “skin deep” and due to the melting point of plastic and
wax, can be susceptible to heat damage. Plastic impregnations are
considered durable in gem materials such as turquoise as long as they are
not subjected to heat or chemicals.
2. Detectability – In most instances a
qualified gemologist can readily identify the treatment.
3. Encountered in the trade – Frequently seen in the
trade.
4. Special care requirements – Care must be taken
not to subject gemstones with wax or plastic impregnations to heat, such as
that encountered by a jeweler’s torch, since these will likely damage
the material.
– exposure of a gem to an artificial source of radiation to change
its color. This is sometimes followed by a heat treatment to further modify
the color. This second step also known as a “combination
treatment.
1. The most commonly encountered irradiated gems
include:
Diamond – Neutron and electron radiation are the
most common forms of artificial irradiation, and it is possible to induce
black, green, blue green, deep yellow, orange, pink and red diamonds (often
combined with a secondary step of heating, to achieve certain colors).
Corundum – Some bright orange colors are induced
in sapphires with a pale yellow natural color. The color in these is not
stable and fades upon exposure to light.
Topaz – colorless topaz has little commercial value
in the gem market today, but it can be subjected to artificial radiation to
dramatically change its color. Used in conjunction with heat treatment, a
variety of strong blue colors can be achieved for topaz.
Pearl – Some pearls are irradiated resulting in
dark gray colors.
Quartz – Varieties of quartz may be irradiated to
produce amethyst, and some combination treatments that include heating
after irradiation resulted in green quartz.
Other gems – Some varieties of beryl and spodumene
can be irradiated to deepen an inherent color, or change the color
altogether.
2. Durability factors – some irradiated gems’
color fades upon exposure to strong light. Blue topaz, diamond and quartz
tend to have very stable colors as long as they are not exposed to high
temperatures (this is especially true for irradiated colored diamonds,
whose colors may be damaged if the diamond is exposed to the heat of a
jeweler’s torch during jewelry repair procedures).
3. Detectability – Because strong blue
colors do not occur naturally in topaz, such stones are considered to have
undergone irradiation treatment. Strong colors in green, pink, and red
diamonds should also be considered suspect. Determination whether a colored
diamond is natural color or treated color requires examination by an
experienced gem-testing laboratory.
4. Encountered in the trade – Extremely
frequent for topaz, and frequent in fancy color diamonds.
5. Special care requirements – In the beryl and
spodumene gemstones, the irradiated color tends to be short lived and fades
upon exposure to bright light. Otherwise, there are no special care
requirements for most irradiated gem materials.
– this involves using a narrow focused beam of laser light to burn
an open channel from the surface of a diamond to reach dark inclusions.
This is generally followed by the use of a chemical forced into the channel
to dissolve or alter the appearance of the inclusion.
Diamonds are the only gemstones to be treated in this fashion, in part
because only they can withstand the heat of a laser.
1. Durability factors – While lasers could
potentially affect the structure of a diamond, most laser drill holes are
microscopic, and the durability of the diamond does not come into
play.
2. Detectability – Easily detectable by
most gemologists and qualified gemological laboratories because of the
presence of the laser drill holes.
3. Encountered in the trade –
Sometimes.
4. Special care requirements – There are no special
care requirements for laser-drilled diamonds.
– the penetration of certain elements into the atomic lattice of a
gemstone during heat treatment, with the objective of changing or
accentuating its color.
1. The most commonly encountered diffused gems
include:
Corundum (ruby and sapphire) – while experimentation
during the 1980s concentrated on diffusion of titanium and chromium (which
are coloring agents in corundum), the ability to fully penetrate the stone
with color met with little success. In 2003, very strongly colored
sapphires began to appear in the market, and diffusion was again suspected.
It was found that it was diffusion — but of a new element: beryllium.
Beryllium which has a much smaller atom than titanium or chromium, was able
to diffuse all the way through a sapphire; even large sapphires,
successfully changing their color. It was soon found that the color of
rubies could be accentuated as well using this treatment process.
Feldspar – Varieties of feldspar, notably andesine and labradorite were found to be receptive to the diffusion of copper, completely altering their color.
Other materials – There have been reports of
diffusion to cause color alterations in both tourmaline and tsavorite (a
variety of garnet) but the claims have not been substantiated.
2. Durability factors – The treatment is considered
permanent.
3. Detectability – Extremely difficult to
detect with certainty in many instances—and if so, only by qualified
laboratories.
4. Encountered in the trade – Diffusion
treated corundum is widespread in the trade.
5. Special care requirements – There are no special
care requirements for diffusion treated corundum or feldspar.